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Abstract. This paper builds the theory of Fourier analysis on finite groups.

First, Fourier analysis on the real domain is discussed. Then, Fourier anal-
ysis on finite abelian groups is developed. After this, a brief introduction to

representation theory allows for the discussion of Fourier analysis on all fi-

nite groups. Algorithms are designed to perform these transforms, building
to the efficient algorithm developed by Diaconis and Rockmore. Finally, an

implementation of this algorithm for computing Fourier transforms on Sn is

demonstrated.
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1. Introduction

With far-reaching applications in numerous fields such as acoustics and medical
imaging, Fourier analysis is an extremely powerful mathematical tool. Fourier
analysis allows any “nice” function to be modeled as a sum of sine and cosine waves,
by performing what is essentially a change of basis on the function. This moves the
function into what is often called the frequency domain. One application of this
transformation is in lossy compression for audio files. An audio signal, which gives
intensity as a function of time, can be broken into its constituent frequencies using
the Fourier transform. This allows for some of the less important frequencies—
those at the higher range of the spectrum, or that have a small amplitude—to be
discarded. This reduces the amount of data needed to encode the signal, while
making sure that the information loss is difficult to perceive with the human ear.
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The principles of Fourier analysis can be applied to functions mapping from ar-
bitrary finite groups. In this case, the Fourier transform acts similarly, converting
the function into its representation in a new basis. In some instances, this new
representation can be far easier to work with. Researchers at the University of
Chicago (led by Risi Kondor) have recently used Fourier analysis on the symmetric
group in order to perform a similar type of “compression”, allowing functions on
the symmetric group to be stored and updated quickly and easily. This has ap-
plications for object-tracking in machine learning. Additional information on this
application can be found in [9], while further discussion of applications of finite
Fourier theory can be found in [13]. This paper will explore these extensions of
Fourier theory. Following the development of Fourier transforms on finite groups,
efficient algorithms for computing these transforms will be discussed, summarizing
work done by Cooley, Tukey, Diaconis, and Rockmore [1] [5].

2. Preliminaries

More formality is needed for further discussion of Fourier analysis: what is a
“nice” function? What properties should its domain and codomain have? How
is a Fourier transform computed? To answer this questions, a few definitions are
necessary.

Definition 2.1. The L2-norm of a (measurable) function f : X → C, where X is

some measure space, is defined as ‖f‖ := (
∫
X |f |

2)
1
2 .

Remark 2.2. In general, for any p ∈ [1,∞), the Lp norm of a function is given as

‖f‖p = (
∫
X |f |

p)
1
p .

Definition 2.3. A function f : X → C is Lebesgue square integrable if ‖f‖ < ∞.
The set of Lebesgue square integrable functions with domain X is denoted as L2

∗(X).

Definition 2.4. A Hilbert space is an inner product space which is additionally
a complete metric space under the induced metric (the induced metric defines the

distance between two elements x and y as 〈x− y, x− y〉 12 , where 〈·, ·〉 denotes the
inner product).

Definition 2.5. The inner product 〈·, ·〉 on L2(X) is defined as 〈f, g〉 :=
∫
X fg.

This is a function mapping from L2
∗(X)× L2

∗(X) to C.

We want this inner product as defined above to truly be an inner product, so
it is a good idea to check this. Linearity and conjugate symmetry are evident, so
this leaves positive-definiteness. But here we run into a problem: let A be any set
of measure zero (for example, if X = R, we could let A = Q), and let f be the
indicator function on A. Then

∫
X f =

∫
A

1 = 0, by definition of A being measure

zero. Thus, 〈·, ·〉 is not an inner product on L2
∗(X)! Luckily, it turns out that this

is the only thing that can go wrong. Thus, as in usual mathematical style, we will
ignore this issue by modifying the space we are working with.

Definition 2.6. Two measurable functions f, g : X→ Y are said to be equal almost
everywhere if f = g except on a set of measure zero.

Now, almost everywhere equivalence defines an equivalence relation on L2
∗(X).

This allows us to improve upon our definition of L2 space (and lets us get rid of
that annoying asterisk).
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Definition 2.7. L2(X) = L2
∗(X)/ ∼, where f ∼ g if f = g almost everywhere.

Remark 2.8. Note this small technicality of L2(X) formally being equivalence classes
of functions equal almost everywhere is very frequently ignored; it only usually
becomes relevant if you are actually concerned with the pointwise limit of functions.
Usually, one can get by with thinking of an element of L2(X) as being an actual
function, e.g., an element of L2

∗(X). Thus, we will very frequently use this abuse of
notation, referring to elements of L2(X) as functions.

To continue our above argument, on L2(X) it is true by construction that ‖f‖ = 0
if and only if f = 0, and thus we now have positive definiteness of the induced metric
〈·, ·〉 on L2(X). This gives the first part of the following theorem

Theorem 2.9. L2(X) is a Hilbert space, with the metric given by 〈·, ·〉 as defined
in Definition 2.5.

Remark 2.10. The motivation for the weird definition of L2(X) is so that it becomes
a Hilbert space, making L2(X) “nicer” than L2

∗(X).

Proof. (of Theorem 2.9) From the previous discussion and construction of L2(X),
we know it is an inner product space. Additionally, it is necessary to show that
L2(X) is a complete metric space. To do so rigorously requires a good deal of
additional theory. A complete discussion can be found in [12], p.67-68.

�

Now, let us shift our focus to the L2 space of functions over a specific set. We
will consider L2([0, 1]), which can also be interpreted as the set of functions R→ C
with period 1. Since L2([0, 1]) is a Hilbert space, we have a topological basis.

Theorem 2.11. Define the function ek(x) = e2πikx. Then the set {ek | k ∈ Z} is
an orthonormal topological basis of L2([0, 1]).

Proof. First, to show orthonormality. Let m,n ∈ Z, m 6= n. Then

〈em, en〉 =

∫
[0,1]

emen =

∫ 1

0

e2πimxe−2πinxdx =

∫ 1

0

e2π(m−n)ixdx.

Taking an antiderivative and evaluating at the endpoints, this gives∫ 1

0

e2π(m−n)ixdx =
1

2πi(n−m)
(e2πi(n−m) − e0) = 0.

Finally,

〈em, em〉 =

∫ 1

0

e2π(m−m)ixdx =

∫ 1

0

dx = 1,

meaning this is an orthonormal set.
Now we must prove that this set is a basis. We need to show that any element of

f ∈ L2([0, 1]) can be written as a weighted sum of the ek. But how would we figure
out the weights? Assuming this set is a basis, it would make sense to weight each
ek with the coefficient 〈f, ek〉. After all, this is how we would represent a vector
in Rn with the standard basis. But is this the best way to represent an element
of L2([0, 1])? Suppose we have some set A = {ak | k ∈ Z} where each ak ∈ C.
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Let SN (f,A) :=
∥∥∥f −∑N

k=−N akek

∥∥∥2. Now, perform the following manipulations

(from [3]):

SN (f,A) =

∥∥∥∥∥f −
N∑

k=−N

akek

∥∥∥∥∥
2

=

∥∥∥∥∥f −
N∑

k=−N

〈f, ek〉ek +

N∑
k=−N

(〈f, ek〉 − ak)ek

∥∥∥∥∥
2

.

Then, using the linearity and conjugate symmetry of the inner product, this can
be manipulated to get that SN (f,A) is equal to∥∥∥∥∥f −

N∑
k=−N

〈f, ek〉ek

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

k=−N

(〈f, ek〉 − ak)ek

∥∥∥∥∥
2

+2Re(〈f −
N∑

k=−N

〈f, ek〉,
N∑

k=−N

(〈f, ek〉 − ak)ek〉).

As a result of the orthogonality of the ek, the third term is zero. As the inner
product is positive definite, it then must be that choosing ak = 〈f, ek〉 minimizes
SN (f,A) and is therefore the best choice of coefficients for any finite representation
of a function f in this basis of ek functions. This shows the unicity of a function’s
representation in this basis. It is also necessary to show that a representation in
this basis exists for each function in L2([0, 1]).

To show that the set of ek span L2([0, 1]), it is sufficient to show that
limN→∞ SN (f,A) = 0 (where A is the set of all ek). Without appealing to higher-
level theory, this becomes a rather involved proof, so for the sake of brevity, we will
refer to the proof given by Dym and McKean in [6], (p. 31 - 33). �

Now that a topological basis has been established for L2([0, 1]), any f ∈ L2([0, 1])
can be written as f =

∑∞
k=−∞〈f, ek〉ek. This series representation of f is known as

the Fourier series. As this is really just a change of basis, we can define the Fourier

transform f̂ of a function f as it’s image in this new basis, a function that maps
Z→ C:

f̂(k) =

∫ 1

0

f(x)e−2πikxdx.

What about periodic functions with periods not equal to 1? By tweaking the

frequency slightly, i.e. defining ek(x) = e
2πikx
T for some period T ∈ R+ and nor-

malizing the inner product by a factor of 1
T , we can apply the above arguments to

any periodic function in L2(R).
Now, we will turn our focus to expanding these tools to all functions in L2(R).

To do so, we will take a limit of the period of an arbitrary function to infinity
and see how this affects the function’s Fourier transform (this method comes from
discussion in [10]). Let’s start with some function f ∈ L2(R), with period T .
Adapting our Fourier transform as mentioned previously, we have

f̂(k) =
1

T

∫ T

0

f(x)e−
2πikx
T dx

and

f(x) =

∞∑
k=−∞

f̂(k)e
2πikx
T .
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Now, denote ω := 2π
T . Then, multiplying the right side of the equation above by

T ( 1
T ) gives

f(x) =

∞∑
k=−∞

T f̂(k)eωikx
1

T
=

∞∑
k=−∞

T f̂(k)eωikx
ω

2π

=

∞∑
k=−∞

ω

2π

∫ T
2

−T2
f(x)e−ωikxdx.

Taking T →∞, we get that ω → 0. Recognizing the above as a Riemann sum, and
then defining

f̂(y) :=

∫ ∞
−∞

f(x)e−2πixydx

we get that

f(x) =

∫ ∞
−∞

f̂(y)e2πixydy.

Now, it can be seen that this change of basis into a representation as a sum of
complex exponentials can be performed on all elements of L2(R). In the non-
periodic case, we change from using discrete frequencies to continuous ones, and
the sum turns into an integral.

Remark 2.12. One might note an apparent disparity in this transition from the
periodic to the non-periodic case. In the case of a function with a finite period, we

have f : [0, T ] → C and f̂ : Z → C; in the limiting case, we instead get f : R → C
and f̂ : R→ C. This is explained in the general theory of Fourier analysis on infinite
(abelian) groups, but is beyond the scope of this paper.

3. Fourier Theory for All Finite Groups

3.1. Abelian Groups. Though the previous section discussed elements of L2(R),
nothing about the analysis depended heavily on the fact that the domain of these
functions was R. For this reason, Fourier theory can be extended to apply to any
function f : G→ C, where G is some finite group. This finiteness assumption might
seem to be an arbitrary distinction; after all, R is not finite, and yet we can still
perform Fourier analysis on L2(R). This assumption is helpful for a few reasons.
As G is finite, there are no concerns of whether a function G → C is “square
integrable”, as the function will always have a finite sum over the finite elements of
the group. Additionally, finiteness means that we do not have to consider L2(G) as
a set of equivalence classes. It is equal to the set of all maps from G to C—under
the usual measure, modding out by almost everywhere equivalence has no effect
on a finite set. Finally, the finiteness condition allows applications in computer
science, as can be seen in section 4 (it is hard to run an algorithm on an input of
infinite size!). Because of this, it will be assumed that any group referenced for the
remainder of this paper will be finite.

As is often true with the study of groups, it is much easier to start off by con-
sidering abelian groups. A few definitions are necessary to do so.

Definition 3.1. A (group) character is a homomorphism from a group G to the
multiplicative group of S1. Specifically, χ : G→ S1 is a group character if χ satisfies
the following condition:

χ(gh) = χ(g)χ(h) ∀g, h ∈ G.
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Lemma 3.2. If χ is a character of a (finite) group G, then χ(g) is a |G|-th root
of unity for all group elements g in G.

Proof. Let G be a group, χ a character of G. Let g ∈ G. Then χ(g|G|) = χ(id) = 1,
where id denotes the identity element of G. As χ is a homomorphism, χ(g|G|) =
χ(g)|G| = 1, so χ(g) is a |G|-th root of unity. �

As before, the functions on a group G can be made into an inner product space.
Letting fa, fb be functions from a group G to the complex numbers, the inner
product is defined as 〈fa, fb〉 =

∑
g∈G fa(g)fb(g). As we are working over a finite

group, this is identical to Definition 2.5.

Theorem 3.3. The set of group characters of a (finite abelian) group G is orthog-
onal in L2(G).

Proof. Suppose χa 6= χb are two characters of a (finite abelian) group G, meaning

that there is some g ∈ G with χa(g) 6= χb(g). Then 〈χa, χb〉 =
∑
g∈G χa(g)χb(g).

Let h ∈ G. Then

χa(h)〈χa, χb〉 =
∑
g∈G

χa(h)χa(g)χb(g).

Using the fact that χa is a group homomorphism and G is abelian gives

χa(h)〈χa, χb〉 =
∑
g∈G

χa(gh)χb(g).

Using the bijection g 7→ gh, the sum on the right side is then equivalent to∑
g∈G

χa(g)χb(h−1g) =
∑
g∈G

χa(g)χb(h)χb(g) = χb(h)〈χa, χb〉.

Therefore we get that

χa(h)〈χa, χb〉 = χb(h)〈χa, χb〉.
As this is true for any h, and χa 6= χb, it must be that 〈χa, χb〉 = 0. �

Definition 3.4. The dual group of an abelian group G, denoted as Ĝ, is the set of
characters of G.

Lemma 3.5. Let G be a finite abelian group. Then |G| = |Ĝ|.

Proof. First, suppose that G is cyclic. Then G = Z/mZ for some m in N. Let k

be an element of Z/mZ. Then χk(x) := e
2πikx
m is a character, as |χk(x)| = 1 for

all x in G, and χk(x + y) = χk(x)χk(y) for all x, y in G. Such a character can
be associated with each element of G, and each are distinct, as they all map the
element 1 to a unique value. Therefore, it must be that |Ĝ| ≥ |G|. Additionally, as
Z/mZ is cyclic, generated by 1, any character is uniquely determined by the image
of 1 under the character. By Lemma 3.2, the image must be an m-th root of unity,
of which there are exactly m. Therefore we get that |Ĝ| ≤ m = |G|, which along

with the earlier statement gives that |G| = |Ĝ| in the cyclic case.
Now, we must generalize to all finite abelian groups. Recall the structure theorem

for finite abelian groups, which states that all finite abelian groups are the direct
product of cyclic groups of prime power order. In other words, if G is a finite abelian
group, then G = Z/n1Z × Z/n2Z × ... × Z/nkZ. This means that any element g
can be represented as (g1, g2, ..., gk), where each gi is in the set {0, 1, ..., ni − 1}.
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Now define χg(x) := χg1(x1)...χgk(xk), where each χgi is defined as in the cyclic
case, and x = (x1, ..., xk) ∈ G. This is a map to the complex unit circle, as the
product of complex numbers of norm 1 must also have norm 1. Additionally, it
is a homomorphism, as each χgi is a homomorphism in the cyclic case. Therefore
a character can be identified with each g ∈ G. These characters are unique, as
G is generated by the elements (1, 0, ..., 0), ..., (0, 0, ..., 0, 1), and any two characters
will differ on where they map at least one of these basis elements. This gives that
|Ĝ| ≥ |G|. Additionally, a basis element with a 1 in the i-th coordinate position
must be an ni-th root of unity. This implies that there are at most n1n2...nk = |G|
characters. �

Theorem 3.6. Let G be a finite abelian group. Then G ∼= Ĝ.

Proof. Use the map g 7→ χg as given in the previous proof. As shown previously,

this maps generators of G to generators of Ĝ, and is a homomorphism, so it must
be an isomorphism. �

Remark 3.7. The fact that G is finite allows it to be self-dual. If G were infinite,
this would not necessarily be the case. One example of this is letting G be the
circle group, {z ∈ C | |z| = 1}, under multiplication. It turns out that in this case,

Ĝ = Z (this was hinted at when we saw that f̂ : Z→ C if f : [0, 1]→ C). Here, not

only is G not isomorphic to Ĝ, they do not even have the same cardinality!

Theorem 3.8. The set of characters of a finite abelian group G is a basis for
L2(G).

Proof. Using that G is finite, we can appeal to a different, more obvious basis for
L2(G), that of the “delta” functions. Define the following function:

δg(x) =

{
1 x = g

0 otherwise.

Then the set {δg | g ∈ G} spans L2(G), as any function f can be written as

a1δg1 + ...+ anδgn ,

where each ai = f(gi). It is also orthogonal, as the product δgiδgj = 0 for gi 6= gj .

Therefore this set is a basis for L2(G), one with cardinality |G|. As proven in the
previous two theorems, the set of characters of a group G is an orthogonal set of
order |G|, and therefore must be a basis for L2(G). �

By the previous theorems, any function on a finite abelian groupG can be written
in terms of a Fourier series. This is done in the same way as the real case, using
the equation

f =
∑
g∈G
〈f, χg〉χg.

The analog to the Fourier transform for an abelian group is then the function

f̂(χ) = 〈f, χ〉 =
∑
g∈G

f(g)χ(g).

Just like the Fourier transform on the real line, the equation given above trans-
forms a function to basis components in a space where the bases are complex
exponentials.



8 ROHAN DANDAVATI

3.2. Non-Abelian Groups. Now that we have the tools of Fourier analysis on
abelian groups, we will extend these practices to all finite groups. Unfortunately,
there is no clear set of functions that can be used as a basis for functions on non-
abelian groups (except for maybe the boring basis of just using delta functions).
To find a new basis for functions on non-abelian groups, some basic representation
theory is needed. Representation theory is a branch of math that allows the study
of groups through the use of linear algebra. Some definitions are needed to formalize
this.

Definition 3.9. A representation (ρ, V ) of a group G is a group homomorphism
ρ : G→ GL(V ), where V is a finite-dimensional vector space over C. Here, GL(V )
refers to the set of invertible linear transformations on V .

Definition 3.10. Let (ρ, V ) be a representation. Then dρ := dimV is used to
denote the dimension of this representation.

Example 3.11. When looking for examples using non-abelian groups, it is usually
helpful to look at the smallest non-abelian group, S3, the group of permutations on
3 elements. S3 can be represented with what’s known as the permuatation repre-
sentation, a map from S3 to GL(C3), taking each element of S3 to its corresponding
permutation matrix. For example, the element (1 2) maps to the following matrix.0 1 0

1 0 0
0 0 1


It can be seen that both (1 2) and its image under this map represent the same
permutation by performing matrix multiplication using the generic element in C3.0 1 0

1 0 0
0 0 1

ab
c

 =

ba
c


Therefore, the matrix representation of (1 2) actually transposes the first two co-
ordinates of a vector in C3. Using this example, an alternative characterization of
a representation can be seen—a representation can also be understood as a group
action of G on V . Making this example explicit using cycle notation, with e repre-
senting the identity element, the map of the permutation representation of S3 is as
given below.

e 7→

1 0 0
0 1 0
0 0 1

 (1 2) 7→

0 1 0
1 0 0
0 0 1

 (1 3) 7→

0 0 1
0 1 0
1 0 0



(2 3) 7→

1 0 0
0 0 1
0 1 0

 (1 2 3) 7→

0 0 1
1 0 0
0 1 0

 (1 3 2) 7→

0 1 0
0 0 1
1 0 0


Example 3.12. Any group G acts on itself by left multiplication, where g ·h = gh.
Identifying the set of elements of G with a basis set of some vector space V, define
the map ρ : G→ GL(V ) by identifying each element with its action on these basis
vectors given by left multiplication. Then (ρ, V ) is a representation of G, known as
the left regular representation.
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Definition 3.13. Let (ρ, V ) be a representation mapping some group G to GL(V ).
Then a subrepresentation (π,W ) is a representation of G where W ⊆ V such that
ρ(g)w ∈W for all w ∈W , and

ρ(g)|W = π(g) ∀g ∈ G.

Remark 3.14. In other words, this means that (π,W ) is a representation where W
is a subspace of V stable under the image of G, and π is equal to the restriction of
ρ to W . Therefore, if we know (ρ, V ), W gives the map π by restriction. Because
of this, it is common to refer to W alone as a subrepresentation of (ρ, V ).

Example 3.15. Let (ρ, V ) be a representation. Denote π0 : G → {0} as the map
sending every element of G to 0. Then (π0, {0}) is a subrepresentation of (ρ, V ).

Example 3.16. Consider the permutation representation of S3 given previously.
Then the subspace of R3 spanned by the vector (1, 1, 1) gives the vector space of
a subrepresentation of R3. This is because any permutation of the entries of this
vector acts as the identity.

Definition 3.17. A representation (ρ, V ) (where V 6= {0}) is called irreducible if
its only subrepresentations are (ρ, V ) and (π0, {0}).

Example 3.18. The permutation representation of S3 given previously is reducible,
as it has a subrepresentation that is neither 0 nor R3. S3 has another representation
which is irreducible. Recall that S3 is isomorphic to D6, the group of symmetries of
the equilateral triangle—this can be seen by labeling the vertices of the triangle and
considering the symmetries as permutations of these vertices. Also, recall that D6

is generated by the elements r, the counterclockwise rotation by 2π
3 , and s, a fixed

reflection. These satisfy the relations r3 = s2 = e and rs = sr−1. Embedding the
equilateral triangle in R2 and using the standard basis, the matrices representing
these operations are:

r 7→

cos( 2π
3 ) − sin( 2π

3 )

sin( 2π
3 ) cos( 2π

3 )

 , s 7→

−1 0

0 1

 .
It can be seen that r and s as given above satisfy the necessary constraints,

and therefore define a representation of D6, and equivalently one of S3. This
representation has no subrepresentations other than (π0, {0}) — if it did, this would
mean that it had a one-dimensional subrepresentation. However, any line through
the origin could not be fixed by r, so this representation could not have a one-
dimensional subrepresentation. Therefore this representation is irreducible.

Definition 3.19. Let (ρ, V ) and (π,W ) be representations of a group G. Then
the direct sum of these representations is a map φ : G → GL(V ⊕W ), satisfying
that φ(g)(v, w) = (ρ(g)(v), π(g)(w)) for (v, w) in V ⊕W .

Theorem 3.20. Let G be a finite group. Then if (p, V ) is a finite dimensional
representation of G (meaning V is finite dimensional), it can be written as the
direct sum of a finite number of irreducible representations. More concretely, there
are irreducible representations (π1, V1), . . . , (πk, Vk) with V = V1⊕, . . . ,⊕Vk, and in
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an appropriate basis, ρ(g) can be written in block diagonal form, as below

ρ(g) =


π1(g)

π2(g)
. . .

πk(g)

 .
Proof. Let G be a finite group, and let (ρ, V ) a representation. We will prove this
by induction on dimension. In the 1-dimensional case, (ρ, V ) must be irreducible,
as V could have no non-zero subspace. Now, suppose that dρ > 1 and that the
theorem has been proven true for all dimensions less than dρ. If (ρ, V ) is irreducible,
then we are done. Suppose (ρ, V ) is reducible. Then there must be some non-trivial
subrepresentation (π,W ) of (ρ, V ), with W ( V and W 6= {0}. By the induction
hypothesis, it must be that (π,W ) decomposes into a direct sum of irreducible
representations. Now consider the space V/W . Let an element g ∈ G operate on a
coset of V/W , v + W , by g · (v + W ) = ρ(g)(v) + W . This is an action on V/W ,
as ρ(g) preserves W , since (π,W ) is a subrepresentation of (ρ, V ). Therefore, ρ
defines a representation (ρ′, V/W ). Again by the induction hypothesis, it must be
that (ρ′, V/W ) also decomposes as a direct sum of irreducible representations. This
then gives V = W ⊕ V/W , and

ρ(g) =

[
π(g)

ρ′(g)

]
for all g ∈ G. As both (π,W ) and (ρ′, V/W ) can be decomposed into a direct sum
of irreducible representations, it must be that the same can be done with (ρ, V ). �

Example 3.21. To see this theorem in use, consider the example of the permu-
tation representation of S3. Refer to this representation as (ρ,C3). It was stated
previously that the subspace of C3 generated by the vector (1, 1, 1) is preserved
under multiplication by ρ(g) for all g ∈ S3. Now, consider C3/〈(1, 1, 1)〉. This is
spanned by the vectors (1,−1, 0), (0, 1,−1). Observing the action of the elements
of S3 on these basis vectors gives what is known as the “standard representation”
of S3 (in general, the standard representation of Sn is determined through this
procedure). Combining these two representations, one can rewrite the permutation
representation of S3 in block diagonal form, with the upper left 1 × 1 block giving
the trivial representation (mapping each element to 1), and the bottom right 2 ×
2 block giving the standard representation, shown below.

e→

1 0 0
0 1 0
0 0 1

 (1 2)→

1 0 0
0 −1 1
0 0 1

 (1 3)→

1 0 0
0 0 −1
0 −1 0



(2 3)→

1 0 0
0 1 0
0 1 −1

 (1 2 3)→

1 0 0
0 0 −1
0 1 −1

 (1 3 2) 7→

1 0 0
0 −1 1
0 −1 0


What is the purpose of working with these representations? We will soon see

that representations of a finite group G are a way of realizing an alternate basis
for functions G→ C, just as characters were used in the abelian case. Recognizing
that a group character is just a one-dimensional representation makes these tools
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consistent between abelian and non-abelian cases. A little more theory is needed
before we will be able to prove the full utility of representations.

Definition 3.22. Let (ρ, V ) and (π,W ) be representations, and L : V → W be a
linear map. Then L intertwines ρ and π if

Lρ(g) = π(g)L ∀g ∈ G.

Definition 3.23. Let (ρ, V ) and (π,W ) be representations. Then they are said to
be equivalent if there exists some vector space isomorphism L that intertwines ρ
and π.

Example 3.24. The standard representation of S3 is equivalent to the represen-
tation of S3 given in Example 3.18.

Proposition 3.25. Let L : V → W intertwine (ρ, V ) and (π,W ). The restriction
of ρ to the kernel of L gives a subrepresentation of ρ. The restriction of π to the
image of L gives a subrepresentation of π.

Proof. Let x ∈ kerL. Then L(ρ(g)(x)) = π(g)(L(x)) as L intertwines ρ and π.
Then, as x ∈ kerL, this implies that L(ρ(g)(x)) = 0 for all g in G. So ρ(g) kerL ⊆
kerL, and therefore the restriction to kerL induces a subrepresentation of ρ.

A similar procedure can be followed to prove the second part of the statement.
Let y ∈ Im L. This means that y = Lx for some x ∈ V . Then π(g)(y) =
π(g)(L(x)) = L(ρ(g)(x)) for all g in G, as L intertwines the two operators. There-
fore, π(g)(y) ∈ Im L for all y ∈ Im L, meaning the image of L induces a subrepre-
sentation of π. �

Lemma 3.26. (Schur’s Orthogonality Lemma) Let (ρ, V ), (π,W ) be two irreducible
representations. Let L : V → W intertwine ρ and π. Then L is either the 0 map
or an isomorphism.

Proof. (from [13], Chapter 15, Lemma 1) Suppose L is not the 0 map. Then kerL
is a subrepresentation of ρ by the previous proposition, and kerL 6= V , so it must
be by irreducibility of ρ that kerL = {0}. Therefore L is injective. Furthermore,
as the image of L is not equal to {0}, and the image must give a subrepresentation
of π, it must be that Im L = W . Therefore, L is an isomorphism. �

Theorem 3.27. Let (ρ,Ca) and (π,Cb) be inequivalent irreducible representations
of a finite group G. Let ρn,m : G→ C be the function mapping each element g ∈ G
to the element in the n-th row and m-th column of ρ(g). Define πi,j similarly. Then
ρn,m and πi,j are orthogonal. More formally,

〈ρn,m, πi,j〉 =
∑
g∈G

ρn,m(g)πi,j(g) = 0.

Proof. (from [13], Chapter 15, Theorem 1) Let M be some linear mapping Cb → Ca.
Then define

N :=
∑
g∈G

ρ(g)Mπ(g−1).

Now, let y ∈ G. Then ρ(y)N = ρ(y)
∑
g∈G ρ(g)Mπ(g−1) =

∑
g∈G ρ(yg)Mπ(g−1),

as ρ is a homomorphism. The next manipulation is similar to one performed in the
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proof of orthogonality of group characters—we recognize that as we iterate through
elements g ∈ G, gy also works as an index of G. Then, we get

ρ(y)N =
∑
gy∈G

ρ(gy)Mπ((yg)−1y) =

∑
gy∈G

ρ(gy)Mπ((yg)−1)

π(y) = Nπ(y).

As this holds for any y ∈ G, N is an intertwining operator between (ρ, V ) and
(π,W ). Therefore, by Schur’s orthogonality lemma, N must be either the 0 map or
an isomorphism. It must not be an isomorphism, as it was assumed that (ρ, V ) and
(π,W ) were inequivalent, so N must therefore be the 0 map. As we stated that M
could be any map fromW → V , letM have a 1 in them-th row and the j-th column,
and be otherwise filled with zeros. Then the entry of the n-th row and the i-th
column ofN must be 0. As this entry is equal to

∑
g∈G ρn,m(g)πi,j(g) = 〈ρn,m, πi,j〉,

it must be that

〈ρn,m, πi,j〉 = 0.

�

Lemma 3.28. Let (ρ, V ) be an irreducible representation, and let L : V → V in-
tertwine ρ with itself. Then L = xI, where x is a scalar, and I is the identity linear
transformation.

Proof. Let (ρ, V ), L as stated. Let x be an eigenvalue of L and W the corresponding
eigenspace. Let w ∈ W . Then L(ρ(g)(w)) = ρ(g)(L(w)), as L intertwines ρ with
itself. Since w ∈ W , L(w) = xw. Therefore ρ(g)(L(w)) = ρ(g)(xw) = xρ(g)(w),
meaning that L(ρ(g)(w)) = xρ(g)(w), so ρ(g)(w) ∈ W for all g in G. As W is
stable under ρ, it must induce a subrepresentation of ρ. The irreducibility of ρ then
implies that W must either be {0} or V , meaning that L is equal to xI. �

Theorem 3.29. Let (ρ,Ca) be an irreducible representation of G. Then 〈ρn,m, ρi,j〉 6=
0 if and only if n = i and m = j.

Proof. Similar to before, define

N :=
∑
g∈G

ρ(g)Mρ(g−1),

where M is any linear mapping Ca → Ca. Then, N intertwines ρ with itself, as this
is just a special case of part of the proof of Theorem 3.27. By the above lemma,
this means that N = xI for some x ∈ C. Taking the trace of N , we get

|G| tr(M) = tr(xI),

where I is the identity matrix, as the trace of a matrix is preserved under conjuga-
tion. The identity above implies that |G| tr(M) = xa, where a is the dimension of
ρ. As before, let M have a 1 in the m-th row and the j-th column, and otherwise
be filled with zeros. This gives that the n-th row and the i-th column of N are
equal to

∑
g∈G ρn,m(g)ρi,j(g) = 〈ρn,m, ρi,j〉.

We have that x 6= 0 if and only if tr(M) 6= 0, which occurs if and only if m = j.
Additionally, in the case that x 6= 0, the value in the n-th row and the i-th column
of N is non-zero if and only if n = i. So 〈ρn,m, ρi,j〉 6= 0 if and only if n = i and
m = j �
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Now that, from the two theorems above, we have that matrix entries are orthog-
onal, we are almost ready to define the general Fourier transform on finite groups.
Only the following definitions and proposition are needed.

Definition 3.30. The dual ofG, denoted as Ĝ, is defined as the set of all irreducible
representations of G.

Proposition 3.31. Let G be a finite group. Then∑
ρ∈Ĝ

d2ρ = |G|.

The proof of this proposition requires a good deal more theory than will be
needed as we continue. For a full proof, please see [13], p.256. The previous
theorems along with this proposition demonstrate that the matrix entries of the
irreducible representations are an orthogonal set of size |G|. Recall that, just like
in the abelian case, the set of delta functions form a orthogonal basis of L2(G), with
this basis being of size |G|. Therefore, as the set of matrix entries are an orthogonal
set of size |G|, they must also form a basis. Using this fact, we define the Fourier
transform for all finite groups as the following:

f̂(ρ) =
∑
g∈G

f(g)ρ(g).

Unlike our previous iterations of the Fourier transform, this is a function on repre-
sentations that returns linear maps. By noting that abelian group characters are
one-dimensional representations, and therefore so are their conjugates, we see that
this definition is consistent with the finite abelian case.

4. Computing Fourier Transforms

In the previous sections we have managed to develop the tools of Fourier analysis
on L2(X), where X can be R (or any closed subinterval of R), or any finite group.
These tools have many potential applications. However, Fourier analysis is only
useful if a Fourier transform can actually be computed. In many cases the integral∫ ∞

−∞
f(x)e−2πixydx = f̂(y)

is difficult to compute. This is especially true in the case that f cannot be expressed
in a closed form, or has no formula at all, and is attained through observation. In
order to approximate the Fourier transform in this case, a sample of the function
can be taken. Suppose the function f is sampled at n points, x0, . . . , xn−1. Then
the Fourier transform of f can be approximated at n “frequency components”,
using

(4.1) f̂(yj) =

n−1∑
i=0

f(xi)e
−2πixiyj

n .

As can be seen by referring back to the section 3.1, this is just the formula for the
Fourier transform on the cyclic group of order n. Therefore, Fourier transforms on
finite groups can be useful in computing real Fourier transforms. Unfortunately,
computing these Fourier transforms directly is slow. Since computing each value
of the Fourier transform involves O(n) operations, entirely determining the Fourier
transform of a function on a cyclic group using the näıve algorithm requires O(n2)



14 ROHAN DANDAVATI

operations. For many practical applications, this is prohibitively inefficient. One
way to cut down this run-time is to use inherent symmetries of both the cyclic
group and the Fourier transform itself.

4.1. The Cooley-Tukey Fast Fourier Transform (FFT). We will start with
what is known as the “Cooley-Tukey” algorithm, which computes the Fourier trans-
form on a finite cyclic group of order n, where n is a power of 2. This algorithm
was first published in 1965, but was actually known to Gauss in 1805, though it
was only published posthumously [7]. It is included under the umbrella of a larger
group of similar efficient algorithms for computing the Fourier transform on finite
cyclic groups, that are commonly known as the Fast Fourier Transform (FFT).

To begin, return to (4.1). This sum can be split into two separate sums, one
over even i values, and one over odd values, as shown below:

f̂(yj) =

n
2−1∑
i=0

f(x2i)e
−2π(2xi)yj

n +

n
2−1∑
i=0

f(x2i+1)e
−2π(2xi+1)yj

n .

Factoring out and rearranging these sums gives a much more suggestive form:

f̂(yj) =

n
2−1∑
i=0

f(x2i)e
−2π(xi)yj

n
2 + e

−2πij
n

n
2−1∑
i=0

f(x2i+1)e
−2π(xi)yj

n
2 .

The first summation is a Fourier transform on a cyclic group of size n
2 . The second

term is also a Fourier transform, but with a root of unity tacked on the front.
More specifically, the first sum is the Fourier transform of the function on the even-
indexed elements of the group, while the second is a scaling of the transform of the
function on the odd-indexed elements of the group. Denoting these functions as fe
and fo, respectively, this gives the following equation:

f̂(yj) = f̂e(yj) + e
−2πij
n f̂o(yj).

This means that if the Fourier transforms of fe and fo are calculated previously, f̂
can be recovered with just one multiplication and addition per group element, for
a total of O(n) operations. If T (n) denotes the run-time of computing the Fourier
transform on n elements, this gives the following recurrence relation:

T (n) ≤ 2T

(
n

2

)
+O(n).

To further speed up the calculations, f̂e and f̂o can themselves be calculated re-
cursively in this same manner. This recursive process terminates when n = 1, as
in this case, the Fourier transform of a function on one element is just the func-
tion itself. This type of algorithm is known as a “divide and conquer” algorithm,
as it divides one large problem into smaller subproblems, solves the subproblems
individually and uses these solutions to construct a solution to the large problem.
This procedure gives an algorithm that performs log2(n) “layers” of recursion, each
with a run-time of O(n), meaning that the Cooley-Tukey algorithm has a run-time
of O(n log2(n)). This is a massive improvement from the näıve O(n2) algorithm.
So even though this algorithm comes from just rearranging the Fourier transform,
it provides a considerable speedup. For sufficiently large functions, this can be the
difference between minutes and days.
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For a more explicit description of this algorithm, refer to the pseudocode given
below, for a function called fft(). In this code, the functions splitEvens and
splitOdds are helper functions to extract the values of f on even and odd valued
elements. As array storage is language-dependent, implementations of these helper
functions would be language-specific.

Input: f an array storing the values of the function f ; n, the order of G

Output: f̂ , an array containing the values of the Fourier transform of f
1 if n = 1 then

2 return f // base case, where f̂ = f

3 else
4 evens← splitEvens(f) // utility functions to pull all even/odd

5 odds← splitOdds(f) // elements from the array

6 tevens ← fft(evens, n2 ) // computing F.T. recursively

7 todds ← fft(odds, n2 )

8 f̂ ← ∅
9 for j ∈ {1, 2, . . . , n2 − 1} do

// using recurrence relation to build f̂

10 f̂ [j]← tevens[j] + e
−2πij
n todds[j]

11 f̂ [j + n
2 ]← tevens[j]− e

−2πij
n todds[j]

12 return f̂

4.2. An Algorithm for All Finite Groups. The Cooley-Tukey algorithm is
quick, but is limited in scope: it only works for groups that are cyclic and of a certain
order. However, the idea behind the Cooley-Tukey algorithm is powerful—that the
symmetries of a group can be exploited to save on computational effort. This idea
was used by Diaconis and Rockmore in 1990 to develop an efficient algorithm that
works on all finite groups [5]. The way this algorithm works is to form a recurrence
relation, as was done in the Cooley-Tukey algorithm. One natural way to form
a recurrence relation for an algorithm on a group is to use a descending chain of
subgroups. More formally, a chain is some series of subgroups H1, . . . ,Hn of a
group G with G ⊃ H1 ⊃ H2 ⊃ · · · ⊃ Hn = {id}. Then, the Fourier transform can
be calculated recursively, crawling down the chain to build the Fourier transform
on G. This is what was done in the Cooley-Tukey algorithm, using the chain
Z/2nZ ⊃ Z/2n−1Z ⊃ · · · ⊃ Z/2Z ⊃ {id}.

To give a more complete formulation of Diaconis and Rockmore’s algorithm, we
will return to the definition of the Fourier transform on a finite group:

f̂(ρ) =
∑
g∈G

f(g)ρ(g).

Let H be a subgroup of G, with the index of [G : H] = n.

Remark 4.2. There exist a set of elements {g1, . . . , gn} such that tni=1giH = G.
We will call this a set of coset representatives of H in G. This is also known as a
left transveral of H in G.
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Choosing such a g1, . . . , gn, the sum above can be decomposed into the following
equation:

f̂(ρ) =

n∑
i=1

∑
h∈H

f(gih)ρ(gih).

Defining the function fi(g) := f(gig) and using the fact that ρ is a homomor-
phism gives the rearrangement

f̂(ρ) =

n∑
i=1

ρ(gi)
∑
h∈H

fi(h)ρ(h).

So far, this is just a rewriting of the definition. The breakthrough comes from
the fact that the inner sum is actually a Fourier transform! More specifically, it
is the Fourier transform of the function fi on the representation ρ restricted to
the subgroup H. Denoting the restriction of ρ to H as ρ|H , we can now write the
Fourier transform of ρ as below:

f̂(ρ) =

n∑
i=1

ρ(gi)f̂i(ρ|H).

One issue appears here: ρ|H is not necessarily irreducible, as can be seen in the
following example.

Example 4.3. Let G = S3 and let H be the natural embedding of S2 into S3

(H = {e, (12)}). Then, it can be seen that {e, (123), (132)} are coset representatives
of H, as eH ∪ (123)H ∪ (132)H = {e, (12)} ∪ {(123), (13)} ∪ {(132), (23)} = S3.
Consider ρstd, the standard representation on S3. Then the restriction ρstd|H is the
following map:

e 7→
[
1 0
0 1

]
, (12) 7→

[
−1 1
0 1

]
.

This is a representation, but not an irreducible one—it must be reducible, as the
only irreducible representations on S2 are one-dimensional, since it is abelian.

The above example illustrates that ρ|H is not always irreducible when considered
as a representation of H. However, when ρ is finite dimensional, by Theorem 3.20
it can be written as a direct sum of irreducible representations. In the example,
ρstd|S2

maps S2 to C2, which itself is equal to C × C. Therefore, it can be seen
that ρstd|S2 is equal to a direct sum of two irreducible representations on C. These
happen to be the trivial and sign representations. Therefore, in the appropriate
basis, the map ρstd|S2

can be written as:

e→
[
1 0
0 1

]
, (12)→

[
1 0
0 −1

]
.

While ρ|H may not be irreducible, it can be constructed in block-diagonal form
using other irreducible representations. This means that the Fourier transform on

these irreducible representations can be calculated and used to construct f̂i(ρ|H).
Therefore, we need to determine a set of irreducible representations of H such that
every representation (of H) arising from restriction of an irreducible representation
of G can be written as a direct sum of elements of this set. Then, it is sufficient to

take the Fourier transform of f̂i on this set of representations, and use this to build

f̂i(ρ|H) through direct summation.
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As summarized by Diaconis [4], this algorithm reduces to a few basic steps.

• First, choose a subgroupH ofG. Determine some left transversal {g1, . . . , gn}
of H in G.
• For each of the gi, take the Fourier transform of fi on some set of irreducible

representations of H.

• For each ρ ∈ Ĝ, use the results from the previous step to construct f̂i(ρ|H).
Given an appropriate choice of a basis and a set of irreducible represen-
tations of H from the previous step, these matrices can be constructed
in block-diagonal form, allowing many of these blocks to be used multiple
times in this step—this allows for computational savings!

• Finally, sum over the f̂i(ρ|H), multiplying them by ρ(gi) to construct f̂(ρ)

for each ρ in Ĝ.

Let’s try a simple example.

Example 4.4. Let G = Z/2nZ, for some n ∈ N. Let the subgroup H be Z/2n−1Z,
with the natural embedding being H = {0, 2, 4, . . . , (2n−1 − 1)2}. Here, g1 = 0,
g2 = 1 are a set of coset representatives, as (0 + H) ∪ (1 + H) = G. Using these
choices, we will see how the general algorithm allows us to rearrange this transform.
We will start with the original definition of the Fourier transform on G:

f̂(j) =

2n−1∑
m=0

f(m)e
−2πimj

2n .

Now, rearranging the sum using the subgroups and the coset representatives:

f̂(j) =

1∑
k=0

e
−2πikj

2n

2n−1−1∑
m=0

fk(2m)e
−2πi(2m)j

2n .

Using the fact that fk(x) = f(k + x), as Z/2nZ uses additive notation, we get the
following equation, including a few further rearrangements.

f̂(j) =

1∑
k=0

e
−2πikj

2n

2n−1−1∑
m=0

f(k + 2m)e
−2πimj

2n−1

When k = 0, this sums over the even valued elements of the group. When k = 1,
this sums over the odd elements of the group, multiplying the sum by a factor of

e
−2πij

2n . This reduces to the familiar equation

f̂(j) = f̂evens(j) + e
−2πikj

2n f̂odds(j).

So the Cooley-Tukey algorithm is really just a specific case of Diaconis and Rock-
more’s generalized algorithm! The Cooley-Tukey algorithm’s simplicity and ease of
implementation is due to the fact that Z/2nZ ⊃ Z/2n−1Z ⊃ · · · ⊃ {id} gives an
easy chain of subgroups to work with, and that Z/2nZ is abelian.

4.3. Implementation and Run-Time Analysis. Let’s consider an implemen-
tation of this algorithm for the purpose of computing Fourier transforms on Sn.
This is a useful group to consider, as every finite group of order n is isomor-
phic to a subgroup to Sn by Cayley’s theorem. Additionally, the embedding
Sn ⊃ Sn−1 ⊃ · · · ⊃ S1 = {id} gives a natural tower of subgroups to use for
our algorithm.
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Before we delve further into this algorithm, we need a few preliminary facts
from the representation theory of Sn. Given that the focus of this section is the
implementation of this algorithm, these statements will be presented without proof.
Those interested in proofs of these statements can refer to work by Diaconis [4, 5].

Definition 4.5. An integer partition of a natural number n is a set {λ1, . . . , λk}
where each λi ∈ N, λ1 ≥ λ2 ≥ · · · ≥ λk and λ1 + · · ·+ λk = n.

Example 4.6. The number 4 has the following integer partitions: {4}, {3, 1}, {2, 2},
{2, 1, 1}, and {1, 1, 1, 1}.

Theorem 4.7. The set of integer partitions of n is in bijection with Ŝn, the set of
irreducible representations of Sn (from [4], Chapter 7, Theorem 1) .

Through what is known as the Young Orthogonal Representation (YOR), any
partition of n can be mapped to an irreducible representation of Sn. The YOR is
especially useful when considering what happens when a representation is restricted
to Sn−1.

Theorem 4.8. (The Branching Theorem [4]) Let ρ be an irreducible representation
on Sn, represented by the partition {λ1, . . . , λk} of n. Let ρ|Sn−1

be the restriction
of ρ to the subgroup Sn−1 ⊂ Sn, the set of elements stabilizing n. We know that
ρ|Sn−1 splits into a direct sum over a collection of irreducible representations. This
collection of irreducible representations are the ones represented by partitions that
can be created by subtracting 1 from any of the λi without violating their decreasing
property.

Example 4.9. Consider the partition {2, 2, 1} of 5, which corresponds to an irre-
ducible representation ρ of S5. Then ρ|S4 is a direct sum of the representations of
S4 given by the partitions {2, 1, 1} and {2, 2}. Note that {1, 2, 1} would not be a
subrepresentation of ρS4

, as this is not a valid partition.

By appealing to these theorems, we now have an easy way to index the irre-
ducible representations of Sn, by the partitions of n. We can also see how these
irreducible representations decompose when restricted to Sn−1. This gives the basis
for an implementation of Diaconis and Rockmore’s algorithm for Fourier transforms
of functions on Sn. Before we fully develop this algorithm, let us consider an imple-
mentation of the basic algorithm for computing a Fourier transform on a function
on Sn. This algorithm has been implemented in Sage, a computer algebra system
built on top of Python. It is essentially Python with several useful packages and
modules added on.

# naive fourier transform on S_n

def slowFT(func, n):

#constructing S_n

G = SymmetricGroup(n)

groupSize = len(G)

# determining all partitions

parts = Partitions(n).list()

numParts = len(parts)

# array to store result of the F.T

ftResult = {}

for i in range(numParts): # iterating through irreducible reps
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# constructing new list entry to hold running sum

rep = SymmetricGroupRepresentation(parts[i], "orthogonal")

# representation of identity element

idRep = rep(G[0])

ftResult[str(parts[i])] = idRep

for j in range(1,groupSize):

# adding to running sum created above

ftResult[str(parts[i])] += (func(G[j]))*rep(G[j])

return ftResult

In the code above, the functions SymmetricGroup(), Partitions(), and
SymmetricGroupRepresentation() are utilities provided by SageMath. The func-
tion iterates through all possible partitions of n, creates the corresponding irre-

ducible representation ρ for each one, and then calculates f̂(ρ) by directly comput-

ing the sum
∑
g∈Sn f(g)ρ(g). The resultant Fourier transform f̂ , is stored in the

dictionary ftResult, a set of key-value pairs where each key is a partition, referring

to the value f̂(ρ), where ρ is the representation given by the partition. This code
is somewhat readable, but is also incredibly slow. The implementation of the fast
algorithm outlined by Diaconis and Rockmore is more difficult, but results in im-
pressive speed-up. To implement this recursive algorithm, a few helper functions
are necessary.

# function to find coset representatives

def getCosetReps(G, n):

# generate a subgroup using (1,2,...,n)

H = G.subgroup([nCycle(n)])

# return its list of elements

return H.list()

The function getCosetReps() returns a set of representatives for the cosets of
Sn/Sn−1. To do so, it takes advantage of the following proposition.

Proposition 4.10. Let τ = (1, 2, . . . , n) ∈ Sn. Then {τ, τ2, . . . , τn = e} is a set of
coset representatives of Sn/Sn−1.

Proof. Suppose τa and τ b for 1 ≤ a, b ≤ n are such that τaSn−1 = τ bSn−1. This
would then imply that τaτ−b ∈ Sn−1. As τ does not fix the element n, it must
then be that a = b. Therefore the powers of τ form a set of coset representatives
of Sn/Sn−1. �

The function getCosetReps() simply uses the function nCycle() to create the
element (1, 2, . . . , n) and makes a list of all powers of this element, which happens
to be the subgroup generated by this element. The helper functions given below
are also needed.

# creates a new function by composing with multiplication

def buildFunc(func, g):

def newFunc(h):

return func(g*h)

return newFunc

# returns partitions indicating subreps of a rep given by a partition

# cannot accept the partition [1]
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def getSubReps(partition):

newPartList = []

k = len(partition)

for i in range(k-1):

# check if valid subrepresentation

if partition[i] > partition[i+1]:

# if so, copy, modify, and append to list

newPart = partition[:]

newPart[i] -= 1

newPartList.append(newPart)

# the last subrep

lastPart = partition[:]

if lastPart[k-1] > 1:

lastPart[k-1] -= 1

else:

# removing last element of partition if it’s a 1

del lastPart[-1]

newPartList.append(lastPart)

return newPartList

# function that builds block diagonal restricted transforms

# given a partition and an FT

def makeBlockFT(ft, part):

# print(ft)

# print("calling makeBlockFT, partition = " + str(part))

# breaking the partition into subreps

subReps = getSubReps(part)

# making a list of the matrices of the FT for every given subrep

subRepList = [ft[str(i)] for i in subReps]

bdMatrix = block_diagonal_matrix(subRepList)

return bdMatrix

The first of the helper functions above, buildFunc(), modifies a given function
f , returning the function fi : h 7→ f(gih). As discussed previously, the Fourier
transforms of these modified functions will be used to construct our final result. The
next function, getSubReps(), takes a partition giving an irreducible representation,
and returns a list of all partitions representing subrepresentations of the restriction
of the original representation to Sn−1. Finally, the function makeBlockFT () takes
in the Fourier transform of a function on Sn−1, and a partition giving an irreducible
representation of Sn. It uses this to create a block diagonal matrix giving the
value of the Fourier transform of this representation restricted to Sn−1. In the

words of our initial description of the algorithm, makeBlockFT () uses f̂i and a

representation ρ to produce f̂i(ρ|Sn−1
). Now that we have a sufficient set of helper

functions defined, we are ready to implement the algorithm.

# actual computation of FT using Diaconis & Rockmore’s algorithm

def fastFT(func, n):

# print("calling computeFT, n = " + str(n))

G = SymmetricGroup(n)
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if n == 1:

# base case, return dictionary just containing function value

# mapping from trivial rep

return {"[1]" : matrix([func(G[0])])}

else:

cosetReps = getCosetReps(G,n)

# to store result of F.T. on S_n-1

recursed = [None]*n

for i in range(n):

funcG = buildFunc(func, cosetReps[i])

# recursive step

recursed[i] = fastFT(funcG, n-1)

# make irreps

ftRestricted = [None]*n

parts = Partitions(n).list()

numParts = len(parts)

for i in range(n):

# building restricted transforms

ftRestricted[i] = {}

for j in range(numParts):

blockMat = makeBlockFT(recursed[i], parts[j])

ftRestricted[i][str(parts[j])] = blockMat

# computing final FT results

ftResult = {}

for j in range(numParts):

# making the rep

rep = SymmetricGroupRepresentation(parts[j],

"orthogonal")

for i in range(n):

if i==0:

#initializing the matrix

start = rep(cosetReps[i])

start *= ftRestricted[i][str(parts[j])]

ftResult[str(parts[j])] = start

else:

# adding to the running sum

addOn = rep(cosetReps[i])

addOn *= ftRestricted[i][str(parts[j])]

ftResult[str(parts[j])] += addOn

return ftResult

Now that this algorithm has been implemented, how does its run-time compare
with the näıve algorithm? Let’s begin with determining the run-time of the näıve
algorithm on a finite group G. For any given irreducible representation (ρ, V ),

calculating f̂(ρ) in this way requires O(d2ρ|G|) operations, where dρ denotes the
dimension of V. Using Proposition 3.31, calculating the Fourier transform over all
irreducible representations requres O(|G|2) operations for any finite group.
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Table 1. Comparison of Näıve and Fast Fourier Transform on Sn
for Small n.

n
Run-time (in seconds) for Sn

SlowFT() FastFT()

1 0.0004 0.0004
2 0.0020 0.0018
3 0.0111 0.0110
4 0.1050 0.1053
5 4.2183 4.1372
6 389.9200 69.2200
7 55102.3700 1684.9900
8 — 5804.6300

Now to determine the improvement given by our algorithm. The Cooley-Tukey
algorithm satisfied the neat recurrence relation T (n) ≤ 2T (n2 ) + O(n). Unfortu-
nately, since Diaconis and Rockmore’s algorithm depends on the choice of subgroup,
no such recurrence relation exists in the general case. This specific implementation
of the algorithm on Sn satisfies T (n!) ≤ nT ((n − 1)!) + x, where x denotes the
run-time of reconstructing the restricted transforms on Sn from the transforms on
Sn−1 and summing over the product of these restricted transforms and the ρ(gi).
This depends on efficiency of the matrix multiplication. The näıve matrix multipli-
cation algorithm multiplies two n×n matrices in O(n3) time. Recent advances have
resulted in algorithms that run in O(n2.38) time [2]. The theoretical lower bound of
run-time for matrix multiplication is O(n2), as any matrix multiplication algorithm
would at least need to read over all entries in both matrices, of which there are 2n2

in total. By calculating the run-time of the finite group algorithm on Sn assuming
O(n2) matrix multiplication, Diaconis and Rockmore found that their algorithm
executes on Sn in O((n!)n2) time. Noting that log2(n!) is roughly equal to n2, this
means that the algorithm has a run-time of approximately O(|G| log2(|G|)), like
the Cooley-Tukey algorithm.

For experimental data comparing the run-time of the above implementations of
the näıve algorithm and the Diaconis and Rockmore algorithm, see the table above.
Note that there is no data for SlowFT () execution on S8 as there was simply not
enough time for the algorithm to execute before this paper was submitted. The
algorithm ran for over 3 days without terminating.

4.4. Opportunities for Further Improvement and Investigation. While the
implementation of the fast algorithm above provides an impressive speed-up when
compared to the basic algorithm, there is still a lot of room for improvement.
The algorithm was implemented using Sage, which was chosen for ease of use.
Unfortunately, this ease of use comes at the price of efficiency, as such a program
would most likely execute more quickly in a language such as C. As far as the author
is aware, such an algorithm has never been previously implemented in Sage, though
implementations for other algorithms for transforms on the symmetric group have
been written in C++ [8] and Julia [11]. Additionally, this implementation is not
very memory efficient, as it stores a massive amount of data while performing the
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computation. This data is in the form of several dictionaries that are needed to
store results from the recursive calculations of the Fourier transform.

Future implementations could aim to combat these issues of inefficiencies of time
and memory. Finally, as this algorithm is specifically for use on Sn future analysis
of other groups could prove very interesting. Additionally, the above algorithm
always uses one specific tower of subgroups of Sn. Diaconis and Rockmore showed
in their original paper that to minimize the number of operations needed to execute
the algorithm it is necessary to design the chain of groups G = G1 ⊃ G2 ⊃ · · · ⊃
Gk = {id} in such a way that minimizes

∑k−1
i=1 [Gi : Gi+1] ([5], Proposition 2). As

a result, it could be productive to explore alternative subgroup chains of Sn, to see
which chain(s) minimize this sum (the chain used in the implementation above has
a sum of n + (n − 1) + · · · + 2). Doing so could lead to further improvements in
run-time.
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