
Relevance Score Attacks on Elasticsearch

Noah Hirsch Rohan Dandavati Esme Bajo

ABSTRACT
This paper attempts to expand on the Search Text Rele-
vance Score Side-channel attack described in Wang et al.
[1]. We seek to observe the side channel attack, precisely as
described in [1], in both a controlled Kibana environment
and on GitHub. Then, we examine the potential of repos-
itory name attacks on GitHub, evaluating the likelihood of
character-by-character attacks on private repository names
via a statistical approach and a shard mapping technique.

1. INTRODUCTION
We present a series of attempted attacks on Elasticsearch

based on the STRESS attack detailed in [1]. The basic idea
is that Elasticsearch results include relevance scores that
are computed with respect to all documents, not just public
ones. Therefore, if one were to query a term that appeared
in no other documents and a term of the same length that
appeared in many documents (even private ones), the term
that appeared with a high frequency might yield a lower rele-
vance score due to its presence in other documents. A more
detailed discussion of the computation of relevance scores
can be found in Section 2.1.

In this paper, we focus primarily on repository name at-
tacks. The relevance score attack still works on repository
names, but some noise is reduced; almost every 8 character
string will appear in the text of some document, but not
necessarily as the name of some repository. To further elim-
inate noise and focus on the general concepts, some of our
attacks were done in a controlled Kibana environment. This
methodology is detailed in Section 4.1. This allowed us to
control additional variables, including the number of shards
and the method of tokenizing. Most of these points of attack
will serve as warnings of how not to implement Elasticsearch
rather than attacks that can be realistically weaponized.

2. RELATED WORK

2.1 TF-IDF and the STRESS Attack

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Our attack is enabled by the use of the Term Frequency-
Inverse Document Frequency (TF-IDF) statistic that is the
basis of Elasticsearch [3]. The TF-IDF of a document for
a given term is a function both of how often the term ap-
pears in the document, and how often the term appears in
the entire set of documents. Essentially, TF-IDF requires
the use of two functions: tf and idf . The function tf takes
in a term t and a document d and returns some measure of
t’s frequency within d. The function idf takes as input a
term t and a set of documents D and measures t’s inverse
frequency within the set D. Thus, the more frequently t
appears within D, the lower its idf score is. The tf function
can simply return the number of times t appears in d, but a
more complicated function may also be used, depending on
what aspects of frequency one wants to emphasize. For ex-
ample, Elastic uses the square root of the number of counts
as a measure of frequency. This means that all documents
with relatively large counts of a given term will all display
relatively small differences in frequency of that term, as the
frequency is the square root of the count.

The idf function used by Elastic is computed as the ex-
pression

1 + log

(
numDocs

docFreq + 1

)
(1)

where numDocs is the total number of documents in the
index, and docFreq is the number of documents containing
the term. Given the two functions tf and idf , the TF-IDF
value of a given document d in an index D and a term t is
given by

tf(t, d)× idf(t,D).

The use of the TF-IDF measure means that the relevance
score of a document, as returned by Elastic, is a function
of other documents contained within the index. Therefore,
one can strategically use relevance scores to infer informa-
tion about other (potentially private) documents within an
index. This document frequency side channel was discovered
by Büttcher and Clarke and described in [4] in 2005, but was
only successfully tested and exploited in active search engine
deployments by Wang et. al in 2015 [1].

The attack works as follows. Suppose there is some term
t that an attacker believes could be contained in a docu-
ment owned by the victim and further suppose that t is of
sufficient entropy that it is not contained in any other docu-
ment. The attacker can then create a document containing
this same term, enter it into the index, and search the term.
Assuming that the victim’s document is not visible to the
attacker (there would be no need for an attack if it were),



the victim’s document will be removed from the list of doc-
uments containing t and ranked by its relevance score, be-
fore it is returned to the attacker. However, as the inverse
document frequency is taken into account while calculat-
ing the relevance score, the relevance score of the attacker’s
document will be lower than it would have been t was not
contained in the victim’s document. This is referred to as
score-dipping. To see if this is the case, the attacker can cre-
ate an additional document containing another high entropy
term, t′, and observe the score of the document using t′ as
the search term. If there is a significant difference in these
scores, the attacker knows that t must be contained in some
other document in the index, even though they themselves
cannot see the document.

Note that the experiments we perform are in Kibana and
on GitHub, both of which invoke sharding. Essentially, dif-
ferent documents are placed on one of several “shards” and
the index D with respect to which the relevance scores are
computed only contains documents on the same shard as the
returned document.

3. RESEARCH QUESTIONS
After reading the results obtained in [1], we were inter-

ested in first recreating and then attempting to expand upon
the attack. As proof of concept, we first aim to implement
an exact-match attack both in the Kibana environment and
on GitHub private repository names. From here, we want to
explore the effects of different variables in Elasticsearch, in-
cluding wildcards, tokenizing, and sharding. How might we
employ wildcard scoring to gain information about the pres-
ence of a term starting with a given prefix? Can we use this
to implement a character-by-character attack on a string,
thereby reducing the time complexity of retrieving a string
of length n from around 26n (in the exact-match scenario) to
something on the order of 26n (in the character-by-character
scenario)?

With regard to searches on GitHub repository names,
the GitHub RESTful API returns public repository names
sorted by relevance score. We wish to expand on the STRESS
attack by extracting information about private repository
names with this score. More specifically, GitHub claims
to implement a Google-like search optimization [2]. This
suggests the possibility of a partial-match repository name
attack, in which a search query for a portion of a private
repository name may exhibit a score-dipping side channel.
We wish to investigate this possibility by attempting partial-
match attacks on private repository names.

Finally, is there any way we can transform sharding from
an obstacle in the attack to a weapon? For example, if we
can accurately map out the shards containing GitHub repos-
itory names, can we use information about the shard that
a repository name is on to narrow down the user’s iden-
tity? Thorough explanations of how these questions were
addressed and the varying successes and failures of these
approaches follow in the next few sections.

4. TECHNICAL SETUP
Here, we discuss the Kibana/Elasticsearch and GitHub

settings we set when performing our attacks, the reasoning
behind these choices, and the implications.

4.1 Kibana Settings

We downloaded Elasticsearch (version 6.4.2) on a local
machine, as well as an instance of Kibana to adjust different
settings and make queries. The role of Kibana in our project
was to provide a controlled setting, where we could propose
and initially test potential attacks. Therefore, we made our
setup as simple as possible; before uploading any victim and
attack documents, we forced the number of shards to be 1,
so that all existing documents would be used to compute
the relevance score any document returned in a query. We
uploaded the victim and attacker documents using .json files
and performed queries within the Kibana console.

In our setting of Elasticsearch via Kibana, queries were
tokenized based on whitespace and hyphens. Therefore, the
query “abc-123” would result in two tokens, “abc” and “123.”
We left the scoring on the default setting, except when we at-
tempted wildcard attacks. The default setting for wildcard
queries is to return 1 if the prefix is present and 0 otherwise,
thus preventing any character-by-character attack based on
wildcard searching. In the Kibana environment, we changed
the wildcard scoring method to be scoring boolean in an at-
tempt to retrieve more informative (and less secure) scores.

4.2 GitHub API
In order to test the DF side-channel on GitHub’s instance

of Elastic, we needed a way to automate our attacks. As we
had decided to perform our attack on the repository names,
this required that we be able to automatically perform tasks
including creating and deleting repositories. We also needed
to be able to submit a query and return a list of repositories
with their raw relevance scores.

Before we could automate these attacks, we first needed
to configure GitHub accounts to facilitate the attacks them-
selves. We created GitHub accounts which we could use to
create public repositories. Because of the way free GitHub
accounts are structured, we were not able to create private
repositories on these throw-away accounts. We instead had
to use our personal accounts (which were enabled with stu-
dent developer privileges) to create private repositories.

Once we had our GitHub accounts set up, we relied on
both the PyGithub package, as well as code written as
part of Wang et al (and provided to us by Professor David
Cash, a coauthor of the paper) to automate the necessary
tasks. We chose to use PyGithub because it had simple
commands for creating and deleting repositories. The other
code was used for its search functionality, which was im-
plemented through queries to the GitHub API using the
requests library. These packages allowed us to create a
recipe for our first attack, described in Section 5.3, and we
continued to use these tools for the remainder of our attacks
on GitHub.

While the combination of these two code bases was suf-
ficient for our initial requirements, we soon ran into issues
once we tried to expand on our range of attacks. One of the
most persistent problems we ran into was the issue of rate
limiting on the GitHub search API. To get around this we
each ran our own tests, each person using their own throw-
away account. We also put a wrapper around our search
function that would attempt a search and sleep for a given
amount of time if the search failed due to rate limiting (we
usually set this sleep time at 5 seconds). This ensured that
our tests did not fail due to rate limiting errors, but also
meant some of our tests took several minutes to execute. If
we were to continue with this type of research, we would



need to create additional dummy accounts to get around
rate limiting. We ran into a further issue with the GitHub
API when we attempted to create a shard map for the repos-
itory name data. Neither of the libraries we used supported
changing repository names, which was necessary in order to
create a shard map (as we need to be able to test if a reposi-
tory name score-dipping attack is possible on any two given
repositories). We attempted to automate repository name
changing through the requests package, but had little luck.

Overall, using the code from Wang et. al and the Py-
Github package was sufficient for our initial tests. However,
for further testing, we will need a better understanding of
the GitHub API in order to expand our capabilities.

5. RESULTS

5.1 Exact Queries and Exact Tokens
To get started, we made sure the exact-match attack was

still working. In the Kibana environment, after setting the
number of shards to be one, we uploaded three documents:
a victim file “catdogcat” and two attacker files “catdogcat”
and “catdogcar.” From the attacker’s point of view, we can
only see the files “catdogcat” and “catdogcar” but the rel-
evance scores when we queried these terms revealed that
there was another file with an exact match for “catdog-
cat.” When we queried the string “catdogcat,” our known
document “catdogcat” returned with a relevance score of
0.47000363. But when we queried the string “catdogcar,”
our known document “catdogcar” returned with a relevance
score of 0.9808292. The lower score of 0.47000363 would
indicate the presence of a document entitled “catdogcat” to
our attacker.

In addition, we tried the same attack in Kibana, but token
by token. If we can get an exact-match attack on n tokens
of length `1, ..., `n, then we could retrieve the full term in
time

n∑
i=1

26`i < 26
∑n

i=1 `i .

We inserted a victim document “123-45-6789” and two at-
tacker documents“122-00-0000”and“123-00-0000.”The query
“122” returned the document “122-00-0000” with a score of
0.9808292 and the query “123” returned the document “123-
00-0000” with a score of 0.47000363, due to the presence of
the victim “123-45-6789” document. In this idealistic sce-
nario, i.e. a scenario with one shard and no noise, we can
thus recover the entire document“123-45-6789”with no more
than 103 + 102 + 104 queries.

5.2 Wildcards
Next, we attempted to extend this term-by-term attack to

a character-by-character attack by using wildcard queries.
This attempt failed, so this attempt will serve as a warn-
ing against bad Elasticsearch implementations rather than
a practical attack. The default wildcard scoring in Kibana
is to return a relevance score of 1 if a document matches
the given query. That is, if we add the document “catdog”
and query “cat*,” the document “catdog” will yield a rele-
vance score of 1, regardless of the number of other docu-
ments with the prefix “cat” on that shard. This defeats a
relevance score attack. To combat this, we set the variable
“rewrite” to “scoring boolean” in the Kibana console. Now,
despite there being documents “123456789,” “123450000,”

and “123460000” on one shard and no noise, the queries
“12345*” and “12346*” return the documents “123450000”
and“123460000,”respectively, with the same score: 0.9808292.
This is the desired behavior, as it defeats a character-by-
character attack. It is important that sites like GitHub that
deploy Elasticsearch adopt wildcard scoring systems that do
not suggest the presence of victim documents with matching
prefixes.

5.3 Repository Name Attack on Github
When searching for a repository name, the Github API

returns a list of possible results ordered by score value. We
investigated this score for various vulnerabilities related to
the TF-IDF side channel and private repository names. We
briefly looked into the viability of an exact-match attack on a
private repository name, which seemed promising. However,
we quickly moved past this attack as its threat model is
relatively weak. This is because the attack presumes a large
amount of a priori information. The attack goal is to query
the exact private repository name to observe score dipping,
so the attacker must know the entire name beforehand. It is
possible for an attacker to search for the existence of an exact
known repository, such as determining whether Software-
V1.2.3 is in development. Otherwise, if they do not know n
characters, their target repository name is one of 26n exact
possibilities (which is likely to be prohibitively large given
GitHub’s rate limiting). Furthermore, we ran into issues
where the exact match search did not consistently exhibit
score dipping, possibly due to our attack repository being
on a different shard than the victim repository.

We found the possibility of a seed-based character-by-
character side channel to be more interesting. The idea with
this attack would be to start with a realistic known seed
query that matches some substring of the victim repository.
Then, we would create and search for 26 repositories, one
for each alphabetical character appended to the seed, and
look for score dipping. The attack algorithm would append
the score-dipping character to the seed on each iteration,
and look for the next character. Fortunately, we were not
able to identify any effective method for such a character-by-
character attack. Using a random 32-character repository
name, we tried seeds of length 6-31, and tried appending
characters to the start and the end of the seed. So, it does
not seem feasible to use the TF-IDF side channel to build
out a private repository name from a known seed. It is im-
portant to note that our inability to carry out this attack
may have been due to the lack of a shard map for the repos-
itory name indices. So, we were unable to determine if and
when our attacking repositories were on the same shard as
the victim repository. To create a shard map, the ability
to rename repositories is required. We could not reliably
rename our repository names, and so we could not confirm
that sharding was the reason for the seed attack’s failure.
Furthermore, given Github’s search query rate limiting, ex-
act match attacks are not feasible either. So, we have not
identified any legitimate vulnerabilities with Github’s repos-
itory search system.



1: sums of scores = np.zeros(26)
2: for n ∈ range(num trials) do
3: for r ∈ get repos() do
4: r.delete()
5: end for
6: for c ∈ {a,b,...,z} do
7: create repo safe(query prefix + c)
8: end for
9: for i, c ∈ enumerate({a,b,...,z}) do

10: score = make query safe(query prefix + c)
11: sum of scores[i] += score
12: end for
13: end for
14: return chr(min index(sum of scores) + 97)

6. DISCUSSION

6.1 Future Work
As mentioned previously, if we were to further our re-

search, we would plan to create a shard map for the reposi-
tory name data. We believe that our findings for the repos-
itory name attack were influenced by the use of shards in
GitHub’s instance of Elasticsearch. In order to improve on
our attack, and determine whether or not our issues were
caused by repositories/repository names being stored on dif-
ferent shards, it would be necessary to create a mapping of
all possible shards onto which we could insert data. Pseu-
docode for creating this shard map was developed in [1]. We
include a version of this pseudocode adapted to our reposi-
tory name attack below.

Input: n, a maximum number of iterations
Output S, a set of repositories on different shards

1: x← create repo(generate repo name())
2: S ← {x}
3: for i ∈ {1, . . . , n} do
4: y ← create repo(generate repo name())
5: if y is on the same shard as any repo in S then
6: continue
7: else
8: S ← S ∪ y
9: end if

10: end for
11: return S

In the above code, generate repo name() refers to a func-
tion that returns a random repository name of sufficient
length (for our attempts we used 32 characters). We at-
tempted to implement this algorithm in order to create a
shard map, but ran into issues with testing if two repository
names are kept on the same shard. To do so, one must first
create two repositories. Suppose these are named “r1” and
“r2”. If both of these names were stored on the same shard,
we would expect to observe score dipping if we changed the
name of the second repository so it was also“r1”— searching
for “r1” would return a lower relevance score than searching
for“r2”. If the repository names were not on the same shard,
no such score dipping would occur. Therefore, it would be
possible to create such a shard map given sufficient time (as
it is sometimes necessary to sleep during the shard test in or-
der to ensure that the new repository has been indexed and
that its name change is properly reflected on its respective

shard) and the ability to rename repositories. As we recently
attempted to create a shard map, we ran into issues when
trying to change repository names through queries, as de-
scribed in [2]. We unfortunately did not have enough time
to resolve these issues and still take the time to actually
create a shard map, but we believe this to be a useful next
step.

There are many things that could be learned from cre-
ating a shard map. At first, we believed that all repository
names were stored on a single shard, in order to enable quick
and complete searching on repository names. We thought
this would be possible as it takes very little data to store
the name of a repository in comparison to all the terms con-
tained in documents within the repository and their respec-
tive frequencies. As we continued with our attacks, we soon
inferred that this was unlikely, as we were not consistently
able to observe score dipping on repository name searches.
However, it is still to be seen how many shards are used by
GitHub to store this data. In [1], the authors found 191
shards while creating a shard map of GitHub’s instance of
Elasticsearch. While it seems as if repository names are not
all stored on one shard, is it necessarily true that they are
distributed among the entire set of shards? If the repository
names are stored on a subset of these shards, this would
enable a score dipping attack that could be executed more
quickly and with fewer queries to the GitHub API, as op-
posed to a score dipping attack of the type described in [1].

6.2 Weaponizing the Work from Wang et al.
Future research could also involve weaponizing the work

from Wang et al. As score dipping attacks also inherently in-
dicate when two repositories are stored on the same shard,
these types of attacks reveal information about the basic
shard structure underlying GitHub’s instance of Elastic. With
these attacks, one can infer which shard holds the data re-
lating to a specific repository. We believe that this type of
information could be relevant if an adversary wants to per-
form a negative SEO attack. Negative SEO attacks involve
attempting to lower an victim’s ranking or relevance score
for a given search engine. It is possible that an adversary
could determine the shard/node where a victim’s documents
are indexed, and use it to target an attack towards that
specific node in order to negatively impact the victim’s rele-
vance scores for GitHub searches. The targeted attack could
involve inserting many documents onto the same shard with
similar terms as the victim’s documents, in order to drive
down relevancy scores for the documents under searches for
the given term. An alternative attack could involve finding
some method to take the node offline, so no relevance scores
are calculated from the documents on the affiliated shard.
However, this type of attack could be prevented by keeping
backup shards in case of a node failure.

7. ACKNOWLEDGMENTS
We would like to thank Professor Cash for introducing

us to this work and for his constant support and guidance
throughout this project. In a show of gratitude, we plan
to pay him a significant sum of DCash (hopefully before it
takes off and becomes too valuable for us to afford).

8. REFERENCES
[1] L. Wang, P. Grubbs, J. Lu, V. Bindschaedler, D. Cash,

and T. Ristenpart. “Side-Channel Attacks on Shared



Search Indexes,” 2017 IEEE Symposium on Security
and Privacy (SP), San Jose, California, USA, 2017, pp.
673-692. doi:10.1109/SP.2017.50

[2] Github REST API v3 Documentation.
https://developer.github.com/v3/search/search-
repositories

[3] Theory Behind Relevance Scoring.
https://www.elastic.co/guide/en/elasticsearch/guide/current/scoring-
theory.htmlidf

[4] S Büttcher and C. L. A. Clarke. A Security Model for
Full-Text File System Search in Multi-User
Environments. FAST ’05: 4th USENIX Conference on
File and Storage Technologies.


